info [at] pipesteel [dot] ir

لوله یا Pipe (Fluid Conveyance) – بخش دوم


Pipe is made out of many types of material including ceramic, glass, fiberglass, many metals, concrete and plastic. In the past, wood and lead (Latin plumbum, from which comes the word ‘plumbing’) were commonly used.

Typically metallic piping is made of steel or iron, such as unfinished, black (lacquer) steel, carbon steel, stainless steel, galvanized steel, brass, and ductile iron. Iron based piping is subject to corrosion if used within a highly oxygenated water stream. Aluminum pipe or tubing may be utilized where iron is incompatible with the service fluid or where weight is a concern; aluminum is also used for heat transfer tubing such as in refrigerant systems. Copper tubing is popular for domestic water (potable) plumbing systems; copper may be used where heat transfer is desirable (i.e. radiators or heat exchangers). Inconel, chrome moly, and titanium steel alloys are used in high temperature and pressure piping in process and power facilities. When specifying alloys for new processes, the known issues of creep and sensitization effect must be taken into account.

Lead piping is still found in old domestic and other water distribution systems, but it is no longer permitted for new potable water piping installations due to its toxicity. Many building codes now require that lead piping in residential or institutional installations be replaced with non-toxic piping or that the tubes’ interiors be treated with phosphoric acid. According to a senior researcher and lead expert with the Canadian Environmental Law Association, “…there is no safe level of lead [for human exposure]”. In 1991 the US EPA issued the Lead and Copper Rule, it is a federal regulation which limits the concentration of lead and copper allowed in public drinking water, as well as the permissible amount of pipe corrosion occurring due to the water itself. In the US it’s estimated that 6.5 million lead pipes installed before the 1930s are still in use.

Plastic tubing is widely used for its light weight, chemical resistance, non-corrosive properties, and ease of making connections. Plastic materials include polyvinyl chloride (PVC), chlorinated polyvinyl chloride (CPVC), fibre reinforced plastic (FRP), reinforced polymer mortar (RPMP),[6] polypropylene (PP), polyethylene (PE), cross-linked high-density polyethylene (PEX), polybutylene (PB), and acrylonitrile butadiene styrene (ABS), for example. In many countries, PVC pipes account for most pipe materials used in buried municipal applications for drinking water distribution and wastewater mains. Market researchers are forecasting total global revenues of more than US$80 billion in 2019. In Europe, market value will amount to approx. €۱۲٫۷ billion in 2020 .

Pipe may be made from concrete or ceramic, usually for low-pressure applications such as gravity flow or drainage. Pipes for sewage are still predominantly made from concrete or vitrified clay. Reinforced concrete can be used for large-diameter concrete pipes. This pipe material can be used in many types of construction, and is often used in the gravity-flow transport of storm water. Usually such pipe will have a receiving bell or a stepped fitting, with various sealing methods applied at installation.

Traceability and positive material identification (PMI)

When the alloys for piping are forged, metallurgical tests are performed to determine material composition by % of each chemical element in the piping, and the results are recorded in a Material Test Report (MTR). These tests can be used to prove that the alloy conforms to various specifications (e.g. 316 SS). The tests are stamped by the mill’s QA/QC department and can be used to trace the material back to the mill by future users, such as piping and fitting manufacturers. Maintaining the traceability between the alloy material and associated MTR is an important quality assurance issue. QA often requires the heat number to be written on the pipe. Precautions must also be taken to prevent the introduction of counterfeit materials. As a backup to etching/labeling of the material identification on the pipe, positive material identification (PMI) is performed using a handheld device; the device scans the pipe material using an emitted electromagnetic wave (x-ray fluorescence/XRF) and receives a reply that is spectrographically analyzed.


Pipe sizes can be confusing because the terminology may relate to historical dimensions. For example, a half-inch iron pipe does not have any dimension that is a half inch. Initially, a half inch pipe did have an inner diameter of 0.5 inches (13 mm)—but it also had thick walls. As technology improved, thinner walls became possible, but the outside diameter stayed the same so it could mate with existing older pipe, increasing the inner diameter beyond half an inch. The history of copper pipe is similar. In the 1930s, the pipe was designated by its internal diameter and a 1⁄۱۶-inch (1.6 mm) wall thickness. Consequently, a 1-inch (25 mm) copper pipe had a 1 1⁄۸-inch (28.58 mm) outside diameter. The outside diameter was the important dimension for mating with fittings. The wall thickness on modern copper is usually thinner than 1⁄۱۶-inch (1.6 mm), so the internal diameter is only “nominal” rather than a controlling dimension. Newer pipe technologies sometimes adopted a sizing system as its own. PVC pipe uses the Nominal Pipe Size.

Pipe sizes are specified by a number of national and international standards, including API 5L, ANSI/ASME B36.10M and B36.19M in the US, BS 1600 and BS EN 10255 in the United Kingdom and Europe.

There are two common methods for designating pipe outside diameter (OD). The North American method is called NPS (“Nominal Pipe Size”) and is based on inches (also frequently referred to as NB (“Nominal Bore”)). The European version is called DN (“Diametre Nominal” / “Nominal Diameter”) and is based on millimetres. Designating the outside diameter allows pipes of the same size to be fit together no matter what the wall thickness.

For pipe sizes less than NPS 14 inch (DN 350), both methods give a nominal value for the OD that is rounded off and is not the same as the actual OD. For example, NPS 2 inch and DN 50 are the same pipe, but the actual OD is 2.375 inches or 60.33 millimetres. The only way to obtain the actual OD is to look it up in a reference table.
For pipe sizes of NPS 14 inch (DN 350) and greater the NPS size is the actual diameter in inches and the DN size is equal to NPS times 25 (not 25.4) rounded to a convenient multiple of 50. For example, NPS 14 has an OD of 14 inches or 355.60 millimetres, and is equivalent to DN 350.

Since the outside diameter is fixed for a given pipe size, the inside diameter will vary depending on the wall thickness of the pipe. For example, 2″ Schedule 80 pipe has thicker walls and therefore a smaller inside diameter than 2″ Schedule 40 pipe.

Steel pipe has been produced for about 150 years. The pipe sizes that are in use today in PVC and galvanized were originally designed years ago for steel pipe. The number system, like Sch 40, 80, 160, were set long ago and seem a little odd. For example, Sch 20 pipe is even thinner than Sch 40, but same OD. And while these pipes are based on old steel pipe sizes, there is other pipe, like cpvc for heated water, that uses pipe sizes, inside and out, based on old copper pipe size standards instead of steel.

Many different standards exist for pipe sizes, and their prevalence varies depending on industry and geographical area. The pipe size designation generally includes two numbers; one that indicates the outside (OD) or nominal diameter, and the other that indicates the wall thickness. In the early twentieth century, American pipe was sized by inside diameter. This practice was abandoned to improve compatibility with pipe fittings that must usually fit the OD of the pipe, but it has had a lasting impact on modern standards around the world.

In North America and the UK, pressure piping is usually specified by Nominal Pipe Size (NPS) and schedule (SCH). Pipe sizes are documented by a number of standards, including API 5L, ANSI/ASME B36.10M (Table 1) in the US, and BS 1600 and BS 1387 in the United Kingdom. Typically the pipe wall thickness is the controlled variable, and the Inside Diameter (I.D.) is allowed to vary. The pipe wall thickness has a variance of approximately 12.5 percent.

In the rest of Europe pressure piping uses the same pipe IDs and wall thicknesses as Nominal Pipe Size, but labels them with a metric Diameter Nominal (DN) instead of the imperial NPS. For NPS larger than 14, the DN is equal to the NPS multiplied by 25. (Not 25.4) This is documented by EN 10255 (formerly DIN 2448 and BS 1387) and ISO 65, and it is often called DIN or ISO pipe.

Japan has its own set of standard pipe sizes, often called JIS pipe.

The Iron pipe size (IPS) is an older system still used by some manufacturers and legacy drawings and equipment. The IPS number is the same as the NPS number, but the schedules were limited to Standard Wall (STD), Extra Strong (XS), and Double Extra Strong (XXS). STD is identical to SCH 40 for NPS 1/8 to NPS 10, inclusive, and indicates .375″ wall thickness for NPS 12 and larger. XS is identical to SCH 80 for NPS 1/8 to NPS 8, inclusive, and indicates .500″ wall thickness for NPS 8 and larger. Different definitions exist for XXS, however it is never the same as SCH 160. XXS is in fact thicker than SCH 160 for NPS 1/8″ to 6″ inclusive, whereas SCH 160 is thicker than XXS for NPS 8″ and larger.

Another old system is the Ductile Iron Pipe Size (DIPS), which generally has larger ODs than IPS.

Copper plumbing tube for residential plumbing follows an entirely different size system in America, often called Copper Tube Size (CTS); see domestic water system. Its nominal size is neither the inside nor outside diameter. Plastic tubing, such as PVC and CPVC, for plumbing applications also has different sizing standards.

Agricultural applications use PIP sizes, which stands for Plastic Irrigation Pipe. PIP comes in pressure ratings of 22 psi (150 kPa), 50 psi (340 kPa), 80 psi (550 kPa), 100 psi (690 kPa), and 125 psi (860 kPa) and is generally available in diameters of 6″, 8″, 10″, 12″, 15″, 18″, 21″, and 24″.

پایپ استیل | PipeSteel
لینک کوتاه مطلب : http://pipesteel.ir/?p=168

اطلاعات تماسی

موبایل: 09143130363 - 09141163454
تـلفن: 34461030-041
تـلفن: 34488185-041
فکس: 34473923-041

ایمیل: info [at] pipesteel [dot] ir

موقعیت روی نقشه | گوگل

ما رو دنبال کنید

دفتر و انبار پایپ استیل

دفتر: انتهاي خيابان رسالت-مجتمع فلزكاران-انتهای ١٤ متري اول-پلاك 264
تـلفن: 34461030-041

انبار: انتهاي خيابان رسالت-جنب مجتمع فلزكاران-انبار و باسكول كاويان

گالری تصاویر

وبلاگ ما

درباره ما

تمامی حقوق مادی و معنوی این وبگاه، برای مجموعه پایپ استیل محفوظ است.

طراحی و توسعه: آدلیم بیلگی سایار آذربایجان